
Kiss
Developer Manual
8 December 2023

by Blake McBride

Copyright c© 2018-2023 Blake McBride All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRI-
BUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHE-
THER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Windows and Microsoft are registered trademarks of Microsoft Corporation. TEX is a
trademark of the American Mathematical Society. Other brand and product names are
trademarks or registered trademarks of their respective holders.

This manual was typeset with the TEX typesetting system developed by Donald Knuth
utilizing the Texinfo format.

i

Short Contents

1 Introduction . 1
2 System Setup . 7

3 Orientation . 15
4 Developing . 17
5 Front-end API . 23
6 Back-end API . 29

7 Command Line Utility . 35

8 Split System . 37
9 Desktop Applications . 41

iii

Table of Contents

1 Introduction . 1
1.1 Kiss Highlights . 2

1.1.1 Back-end Highlights . 2
1.1.2 Front-end Highlights . 2
1.1.3 Back-end Web Service Example . 3
1.1.4 Front-end Web Service Usage Example . 3

1.2 Supported Environments . 3
1.2.1 Development Environment . 3
1.2.2 Production Environment . 4
1.2.3 Databases Supported . 4
1.2.4 Java . 4

1.3 HTML component usage . 4
1.4 System Maturity And Stability . 4
1.5 Getting All Source Code . 5
1.6 Support, Contact, And Links . 5
1.7 License . 5
1.8 Acknowledgments . 6

2 System Setup . 7
2.1 Important . 7
2.2 Super-Quick-Start . 7
2.3 Quick-Start Checklist . 8
2.4 Runtime Environments . 8
2.5 Pre-requisites . 9

2.5.1 Groff and PDF . 9
2.6 Download Kiss . 10
2.7 Documentation . 10
2.8 Setup And Configuration . 10
2.9 Bypassing Authentication . 11
2.10 Building The System . 11

2.10.1 Using an IDE . 13
2.11 Kiss Framework Updates . 13
2.12 What Do I Do With It Now? . 14

3 Orientation . 15
3.1 Back-end Application Files . 15
3.2 Front-end Application Files . 15
3.3 Database . 15
3.4 Single Page Application . 15
3.5 Controlling Browser Cache . 16
3.6 Creating JavaDocs . 16
3.7 Deploying A Kiss Application . 16
3.8 Learning The System . 16

iv

4 Developing . 17
4.1 Overview . 17

4.1.1 IDE . 17
4.2 Back-end Development . 18

4.2.1 REST Server . 18
4.2.1.1 IDE . 18
4.2.1.2 BLD . 18

4.2.2 Application Code . 19
4.2.3 Cached User Data . 19
4.2.4 Programming Languages . 20
4.2.5 Cron . 20
4.2.6 CORS . 20

4.3 Front-end Development . 21
4.3.1 Mobile Interface . 21

4.4 Reports And Exports . 22
4.5 Authentication . 22

5 Front-end API . 23
5.1 Calling REST Services . 23
5.2 Kiss Components . 24

5.2.1 Tagless Components . 24
5.3 Modal Popup Windows . 24
5.4 File Uploads . 25
5.5 Utilities . 26
5.6 Controlling Browser Cache . 26
5.7 Additional Resources . 27

6 Back-end API . 29
6.1 Database API . 29
6.2 Microservices . 30

6.2.1 Microservice Language . 30
6.2.2 Types Of Microservices . 31
6.2.3 Remote Microservices . 31
6.2.4 Defining Remote Services . 31
6.2.5 Local Microservices . 32

6.3 JSON . 32
6.4 Utilities . 33

7 Command Line Utility . 35
7.1 Building The Utility . 35
7.2 Using The System . 35
7.3 Databases Other Than PostgreSQL . 35

v

8 Split System . 37
8.1 Back-end-only System . 37

8.1.1 Creating . 37
8.1.2 Developing . 37
8.1.3 Deploying . 37
8.1.4 Upgrading . 38

8.2 Front-end-only System . 38
8.2.1 Creating . 38
8.2.2 Developing . 38
8.2.3 Deploying . 38
8.2.4 Upgrading . 39

9 Desktop Applications . 41

1

1 Introduction

The KISS Framework is an application development framework for developing web-based
business applications, portable desktop applications, and command-line utilities. The main
home for Kiss is https://github.com/blakemcbride/Kiss

Kiss’ focus is on simplicity and development speed. By being simple to develop in,
development and support of the application can occur more rapidly. Simplicity is achieved
by abstracting away as much common functionality as possible so that developer lines of
code are maximally applicable to the application solution rather than infrastructure and
support of the framework. Throughout the framework, business-normal defaults have been
employed in order to minimize commonly needed functionality.

Another goal of the Kiss framework is to be a complete web-based application development
solution. Kiss isn’t a browser solution alone, nor is it a back-end solution. Kiss includes
solutions for both ends – although the two sides may largely be used independently.

Kiss attempts to create a consistent interface. This can greatly simply code even in
simple cases. For example, in terms of an input text control, why would you disable/enable
it with:

$('#id').prop('disable', false);

$('#id').prop('disable', true);

and then hide/show it with:

$('#id').hide();

$('#id').show();

Kiss provides a consistent interface. With Kiss, you would do:

$$('id').disable();

$$('id').enable();

$$('id').hide();

$$('id').show();

Kiss is designed to be simple to get started with, simple to learn, and simple to use.
Kiss does this while supporting important technologies such as micro-services, front-end
components, and SQL.

The term single page application has several, subtly different, meanings. One meaning is
that the entire application code is bundled into a single file or HTTP GET request. In that
sense, Kiss is not a single page application. This makes no sense for a business application
that could have hundreds of screens.

Another meaning of the term single page application is that there is only a single html
tag and all of the remaining pages are modifications of the original html tag contents. In
this sense, Kiss is a single page application. Kiss applications lazy-load as needed. Browser
cache is leveraged to minimize Internet traffic.

https://github.com/blakemcbride/Kiss

2 Kiss Manual

Kiss is used in a production environment and built by someone with more than 30 years
experience as a framework designer and a business application software engineer. So Kiss is
not a proof of concept.

Kiss was built as a solution to the challenges faced by the author when developing
web-based business applications. As such, Kiss is more a solution for business application
development than for the development of public facing company presentation web sites.

Another goal of Kiss is to keep the front-end and back-end as independent of each other
as possible. To this end, communications between the front-end and back-end occur via
REST services and JSON. This accomplished two things. First, it allows your organization
to be best prepared for the ever-evolving software environment. Pieces can be changed and
enhanced without causing massive re-writes of the entire system. The second advantage is
that by pushing as much processing to the front-end as possible (rendering the display on
the front-end), the system can better scale.

1.1 Kiss Highlights

Some highlights of the Kiss system include:

1.1.1 Back-end Highlights

1. Micro services - add, change, or delete a web service on a running system.

2. Each web-method is in a single file and are very simple. No configuration files or setup
code needed.

3. Easy access to common SQL databases with support for nested queries without cursor
interference.

4. All REST services are stateless. However, the system fully authenticates each request.

5. Changes to web services occur immediately, on a running system, without the need to
reboot the application.

6. A growing class library to handle common business application needs.

7. Back-end framework is written in Java, and the system is portable to Linux or Windows
servers.

8. Web services may be written in Groovy, Java or Common Lisp. Python, JavaScript,
Ruby, and Scala are expected to follow soon.

9. User authentication

10. Asynchronous back-end REST services (via a queue and thread pool) provide support
for heavy loads and high throughput.

11. A powerful and convenient class library for dealing with SQL persistence that supports
PostgreSQL, Microsoft SQL Server, MySQL, Oracle, and SQLite.

1.1.2 Front-end Highlights

1. Build your own HTML components thus encapsulating any amount of code into a
simple, custom HTML tag.

2. Browser cache control. Never ask your users to clear their browser cache again.

3. All code written in JavaScript/HTML/CSS. No need for a complex build and debug
process, nor any need to learn yet another language.

Chapter 1: Introduction 3

4. Growing list of included business oriented components designed to provide simple access
to fully functional business components.

5. Straight forward means of designing your own components without a lot of hidden and
unpredictable magic.

6. System is small and concise, rather then hundreds of megabytes other systems take up.

7. Consistent and simple API.

1.1.3 Back-end Web Service Example

The following example depicts a complete back-end web service. The path to the file is its
URL. The class name is the web method name.

The file is a text file, but compiled code gets executed. Authentication occurs before
main is called.

Simply drop the file in place and the web service and method become immediately
available on a running system. Changes to the service take effect immediately (no need
to reboot the server app). There are no configuration files or other code that needs to be
changed.

For example, the following file is located in the services directory.

class MyWebService {

void myWebMethod(JSONObject injson, JSONObject outjson) {

int num1 = injson.getInt("num1");

int num2 = injson.getInt("num2");

outjson.put("result", num1 + num2);

}

}

1.1.4 Front-end Web Service Usage Example

The following front-end example utilizes the web service defined in the previous sub-section.

let data = {

num1: 22,

num2: 11

};

let res = await Server.call("services/MyWebService", "myWebMethod", data);

if (res._Success) {

let result = res.result;

//...

}

1.2 Supported Environments

1.2.1 Development Environment

The following development platforms are supported by the Kiss framework:

• Linux

• Mac

4 Kiss Manual

• Windows

• WSL under Windows

1.2.2 Production Environment

The following production platforms are supported by the Kiss framework:

• Linux

• Windows Server

1.2.3 Databases Supported

The following database servers are supported by the Kiss framework:

• PostgreSQL

• Microsoft SQL Server

• MySQL

• Oracle

• SQLite

1.2.4 Java

The system is tested with Java verion 8 and 17. Any Java version above 8 is expected to
work.

1.3 HTML component usage

To use a component add to HTML:

<my-component></my-component>

Add to JavaScript:

Utils.useComponent('MyComponent');

The component can put any HTML in the component location, have any functionality,
have its own modal windows, and use other components. The component can have custom
and non-custom attributes (like style). Non-custom attributes do what you’s expect them
to do.

The system also supports tag-less components. This provides an easy way to package
arbitrary blocks of code (that can have screens too).

1.4 System Maturity And Stability

The Kiss system has been used in production environments for a several years. Additionally,
several commercial applications utilize Kiss. In spite of this, however, Kiss is constantly
being adjusted in response to additional needs, evolving environments, and bug fixes.

We use Kiss daily in a Linux and PostgreSQL environment. Therefore, it is best tested
there. While we support all of the listed environments, they receive a bit less testing. If you
encounter a problem, please reach out to us. It is probably easy for us to fix, and we are
happy to do so.

Chapter 1: Introduction 5

1.5 Getting All Source Code

Source code for all of Kiss and its dependencies is freely available. The builder program
located at src/main/core/org/kissweb/builder/Tasks.java contains the paths to all of
the external dependencies (those not included in the Kiss distribution). The following lists
the paths to the internal dependencies (those included with Kiss):

abcl.jar https://common-lisp.net/project/armedbear

json.jar https://github.com/blakemcbride/JSON-java

SimpleWebServer.jar (only used during development)

https://github.com/blakemcbride/SimpleWebServer

1.6 Support, Contact, And Links

The Kiss main website is at https://kissweb.org

Source code is at https://github.com/blakemcbride/Kiss

Public discussion and support is available at
https://github.com/blakemcbride/Kiss/discussions

Issue tracking is at https://github.com/blakemcbride/Kiss/issues

Commercial support is available. Contact us via email at blake@mcbridemail.com

1.7 License

Copyright (c) 2018 Blake McBride (blake@mcbridemail.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRI-
BUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHE-
THER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

https://common-lisp.net/project/armedbear
https://github.com/blakemcbride/JSON-java
https://github.com/blakemcbride/SimpleWebServer
https://kissweb.org
https://github.com/blakemcbride/Kiss
https://github.com/blakemcbride/Kiss/discussions
https://github.com/blakemcbride/Kiss/issues
mailto:blake@mcbridemail.com

6 Kiss Manual

OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.8 Acknowledgments

The Kiss design, code, documentation, and web site were written by Blake McBride. The
author gratefully acknowledges and appreciates, among others, the following:

Apache Groovy located at https://groovy-lang.org

Dynamic Loader located at https://github.com/dvare/dynamic-loader

JSON-Java located at https://github.com/stleary/JSON-java (although I am using
a modified version available at https://github.com/blakemcbride/JSON-java)

C3P0 located at https://www.mchange.com/projects/c3p0

Texinfo located at https://www.gnu.org/software/texinfo/

ABCL project located at https://common-lisp.net/project/armedbear

Melaine Sarbey (melswildart@gmail.com) for creating the Kiss logo.

https://groovy-lang.org
https://github.com/dvare/dynamic-loader
https://github.com/stleary/JSON-java
https://github.com/blakemcbride/JSON-java
https://www.mchange.com/projects/c3p0
https://www.gnu.org/software/texinfo/
https://common-lisp.net/project/armedbear
mailto:melswildart@gmail.com

7

2 System Setup

2.1 Important

The Kiss system comes with its own build system, so it doesn’t use build systems such
as ant, maven, or gradle. It works under Linux, Mac, Windows, etc. This included build
system will make things such as downloading remote libraries, installing and configuring a
web server, building Kiss, and running Kiss for development purposes easy, intelligent, and
automatic. This new build system can be used in conjunction with your favorite IDE.

The build system (called it bld) is small and written in Java. Its source code is included
with the Kiss source code. So, a Java compiler will be needed before anything will work.
Java 8, 11, and 17 are supported.

When building the system for the first time, BLD will automatically download and cache
required libraries (jar files), install and configure the development server (tomcat), build the
system, and it can even be used to launch the development-mode server. After building the
system the first time, application development proceeds without any need for re-compiles or
re-builds.

The program that runs BLD is “bld” under Unix-like systems and “bld.cmd” under
Windows. In this manual, “bld” will be shown as “./bld”. The “./” is required under Linux
and Mac but not under Windows. When running on Windows, use “bld” rather than “./bld”
and the same for all the other commands shown.

Note. The Kiss system includes a file named pom.xml. However, Kiss is not a maven
project. The pom.xml file is only included to provide GitHub with a list of dependencies.
Unfortunately, this file sometimes confuses IDEs into interpreting the existence of that file
as the project being a maven project. Therefore, in some instances, it is a good idea to
delete that file prior to IDE configuration.

The build.xml file is also not used by the Kiss system per se. It is an integration with
ant for IDE integration.

2.2 Super-Quick-Start

This is the simplest and shortest path to a running system. It assumes:

1. you have a JDK installed

2. you have your JAVA HOME and JRE HOME environment variables set correctly

3. you have an Internet connection

After doing a git clone, all that is needed is the following:

./bld develop [Linux, Mac, BSD, etc.]

-or-

bld develop [Windows]

This will build the system, install tomcat, deploy the app, and run the server. At this
point you will be able to go your browser at the following URL:

8 Kiss Manual

http://localhost:8000

Be sure not to use port 8080. Although port 8080 will appear to work, you will not be
able to do front-end development while the system is running. Port 8000 will allow front-end
development while the system is running.

At this point, you can do all development without any build procedures. You can add or
change anything on the front-end or back-end while the system is running.

All application back-end code is located under the src/main/backend directory.

All application front-end code is located under the src/main/frontend directory.

If you change anything in either place, the system will notice the change and deliver it
with the next request.

2.3 Quick-Start Checklist

This is a more detailed and expanded description of the same super-quick-start.

The following enumerates the steps necessary to get the system up and running:

1. See [Pre-requisites], page 9,

2. See [Download Kiss], page 10,

3. See [Setup And Configuration], page 10,

4. The development server can be run without an IDE by running: ./bld develop

5. Once the server starts up, you can access it on your browser by going to
http://localhost:8000 You can also debug the back-end by attaching to the process
at port 9000.

Alternatively, your IDE can be configured to run the development process entirely
through it.

Once the development server is running under bld, you can stop it by hitting any key.

2.4 Runtime Environments

As shipped, there are two different environments that Kiss may run in as follows:

1. Development

2. Production

The Production scenario is created with a single command (./bld war) and produces
a single war file (located in the work directory) that can be deployed to your production
environment.

Before doing anything with the Development environment, it is important that you have
the JAVA HOME and JRE HOME environment variables set correctly to the root of your
JDK (Java Developer Kit). Doing this varies according to the OS you are using and various
other Java installation possibilities. There are plenty of instructions on the Internet for this.

The Development environment consists of two servers. One serves the back-end REST
services, and the second serves the front-end HTML, CSS, and JavaScript files. By using

Chapter 2: System Setup 9

this method, both front-end and back-end source files can be changed on a running system
and take effect immediately without any builds, compiles, server reboots, re-deploys, or file
copies. (This is also true of a production environment – with a single server – when the new
files are put in place.)

Back-end REST services are debugged, and edited through the IDE. Saving a source file
is all that is needed to have it take effect.

The front-end (HTML, CSS, and JavaScript files) are served by a simple server sup-
plied with the Kiss system. This server is only used during the development process. See
[Front-end Development], page 20. (Source code to this server is available at https://

github.com/blakemcbride/SimpleWebServer) Debugging the front-end is done through
the browser debugger. There is no setup, and the front-end server runs by executing a single
command.

2.5 Pre-requisites

You should download and install the following pre-requisites.

1. Java JDK 8, 11, or 17 from many sources including https://www.azul.com/

downloads/zulu-community or https://docs.aws.amazon.com/corretto/latest/

corretto-8-ug/downloads-list.html or https://developers.redhat.com/

products/openjdk/download or https://adoptopenjdk.net

2. An SQL database server (e.g. PostgreSQL, Microsoft SQL Server, MySQL, Oracle,
SQLite)

3. IDE (e.g. IntelliJ (https://www.jetbrains.com/idea), VSCode, NetBeans, eclipse)

4. GIT source code control system

Correctly setting the JAVA HOME and JRE HOME environment variables to the root
of your JDK is necessary. Setting this varies from OS to OS and also depends on where it
gets installed. Instructions for setting this variable are all over the Internet.

The system was built and tested with JDK 8, 11 and 17, PostgreSQL (https://www.
postgresql.org), IntelliJ (https://www.jetbrains.com/idea), and tomcat (https://
tomcat.apache.org). Other environments such as IIS, Glassfish, eclipse, should work fine
but may require some configuration.

Kiss comes with its own build system. See [Important], page 7,

Install the above according to their instructions.

2.5.1 Groff and PDF

The Kiss reporting facilities are dependent on the full groff system and the ability to convert
Postscript files to PDF files. This is generally true on Linux, however, the full groff package
may need to be installed. Mac’s are fine. These packages are not on Windows and must be
installed.

Correctly installing groff and ghostscript will allow the reporting facilities to work under
Windows. They may be obtained from:

https://sourceforge.net/projects/ezwinports

https://github.com/blakemcbride/SimpleWebServer
https://github.com/blakemcbride/SimpleWebServer
https://www.azul.com/downloads/zulu-community
https://www.azul.com/downloads/zulu-community
https://docs.aws.amazon.com/corretto/latest/corretto-8-ug/downloads-list.html
https://docs.aws.amazon.com/corretto/latest/corretto-8-ug/downloads-list.html
https://developers.redhat.com/products/openjdk/download
https://developers.redhat.com/products/openjdk/download
https://adoptopenjdk.net
https://www.jetbrains.com/idea
https://www.postgresql.org
https://www.postgresql.org
https://www.jetbrains.com/idea
https://tomcat.apache.org
https://tomcat.apache.org
https://sourceforge.net/projects/ezwinports

10 Kiss Manual

https://www.ghostscript.com

2.6 Download Kiss

Kiss is located at https://github.com/blakemcbride/Kiss

It can be downloaded via the following command:

git clone https://github.com/blakemcbride/Kiss.git

2.7 Documentation

The Kiss documentation consists of three parts; this manual, the detailed back-end API
documentation contained in the JavaDocs, and the detailed front-end API documentation.
The JavaDocs do not come with the system, but you can generate them yourself with what
is provided. See [Creating JavaDocs], page 16.

This manual may be created in two forms. The first is in an HTML form. The system
comes with this. You can also generate a nicely formatted PDF file with the following
commands (if you have all of the formatting tools installed):

cd manual

make Kiss.pdf

Updates to the HTML file are achieved with the following commands:

cd manual

make

All of the documentation can be accessed with your browser. For example, if the root of
Kiss is located at /my/home/path/kiss then you will be able to access the three manuals
at the following URL’s:

file:///my/home/path/kiss/manual/man/index.html

file:///my/home/path/kiss/work/javadoc/index.html

file:///my/home/path/kiss/manual/jsdoc/index.html

2.8 Setup And Configuration

The system is configured by the contents of a single file src/main/backend/KissInit.groovy
A reboot of the web server is required if any of the parameters in this file are changed.

Given that Kiss is for business applications, it authenticates its users. In order for this
to work, there is usually a database of valid users. This information is persisted in an SQL
database. Therefore a database is normally required. However, for testing purposes, if no
database is configured, the system will still run and allow any username and password to
succeed.

As shipped, the system comes configured as follows:

Database type SQLite

https://www.ghostscript.com
https://github.com/blakemcbride/Kiss

Chapter 2: System Setup 11

Host localhost
Database DB.sqlite
Database user [empty]
Database user password [empty]

Valid options for the Database type are as follows:

• PostgreSQL

• MicrosoftServer

• MySQL

• Oracle

• SQLite

Support for other databases is easy to add.

setMaxWorkerThreads defines how many REST services may be processed in parallel.
Service requests beyond this are placed in a FIFO queue and processed as worker threads
become available. This capability drastically improves the system’s ability to handle a large
number of simultaneous users.

The remaining parameters should be self-explanatory. Use the format shown in the
example.

Although Kiss comes with a default demo database, another one should be configured in
live or more substantial development environments. An SQL script file, named init.sql,
is included with the system to initialize said database. Application specific tables may be
added to this database.

The default username is kiss, and the default password is password

2.9 Bypassing Authentication

On rare occasions, it is necessary to bypass authentication. In other words, be able to
execute a web service without being logged in. One example of this is registering a new user.
If the user isn’t already a valid user, they can’t execute services in order to register.

Kiss has a way of dealing with this scenario. This is done in the same
configuration file where all of the configuration options are located. In the file
src/main/backend/KissInit.groovy. In that file, you are able to specify specific web
methods that may be called without authentication. That file has an example.

It should be noted that it is recommended that something like a captcha be used to
at least be confident you are communicating with a human. Additionally, it should be
noted that the danger of providing unauthenticated services is somewhat mitigated by the
combination of HTTPS and CORS.

2.10 Building The System

Although the system may be built with the included build system (called bld) or your
favorite IDE, the bld system should be used for the initial step which downloads the external
dependencies (jar files).

12 Kiss Manual

The build system included with Kiss (called bld) has been tested on Linux, Mac, and
Windows. The system also includes an Ant build file (named build.xml) that is only used
for IDE integration with the included bld system.

The build system included with Kiss is written in Java and located under the
src/main/core/org/kissweb/builder/ directory. This build system also includes two driver
batch files / shell scripts used to build and run the build system. All that is needed to use
this system is a Java compiler. (As a side note - this build system is generic and can be
used to build other types of projects.)

The build process is run from the command-line. No IDE is necessary. There is no
specific IDE integration. None is needed because the system is rarely built. After the first
build, application development is done without any build process.

The build system, which comes in source form, must be built before it can be used to
build Kiss. However, the build system gets built automatically by bld.

You can see what operations it can perform by typing:

./bld listTasks [Linux, Mac, BSD, etc.]

-or-

bld listTasks [Windows]

Those tasks that require prior tasks will evoke the dependent tasks automatically. The
system is smart enough not to repeat tasks that are unneeded.

The main tasks that will be of interest to you are as follows:

libs This task is only required if you intend to use your IDE to build the remainder
of the system. It installs the required dependencies.

develop This will cause the entire system to build (not repeating unnecessary steps)
and start up a tomcat instance to run the system in a development mode. The
system will be available from your local browser at http://localhost:8000.
You may debug the application by attaching to the running tomcat server at
port 9000.

war This will cause the system to generate the single file needed by a production
system. It will end up in work/Kiss.war

Other tasks which may be useful are as follows:

clean This task removes all files built but retains files that were downloaded from
repositories (although bld caches those files anyway.)

realclean

This removes all built and downloaded files so the system should be everything
you need to build it without any extraneous files

all This performs all of the steps necessary to setup and build the system but
doesn’t start up the tomcat server.

javadoc This task creates the javadoc files that end up in work/javadoc

Chapter 2: System Setup 13

kisscmd This task creates a command-line JAR that can be used in a non-web, command-
line application. This is useful when creating applications that perform various
utility functions. This JAR cannot be used in any web environment. See
src/main/core/org/kissweb/Main.java

See [Important], page 7, and See [Quick-Start Checklist], page 8.

2.10.1 Using an IDE

Most IDE’s can be used to develop and debug the application. There are two way to do this
as follows:

1. Using bld to build and run the development environment.

2. Using your IDE to build and run the development environment.

Using bld to build and run the development environment is the easiest to start off with
but is somewhat klunky on an ongoing basis. Its main advantage is that it is portable and
doesn’t require a lot of IDE configuration. The back-end development server is configured
and started by bld by simply running ./bld develop After that, the IDE can be used to debug
it by attaching to port 9000.

Kiss also comes with an ant build that simply calls the native bld program. This is
useful as an intermediary between bld and the IDE since many IDE’s support ant.

Using your IDE to run the entire process is a bit tedious to initially setup but makes
the entire process simpler from that point forward. Unfortunately, configuring your IDE is
completely different for each IDE. Instructions for setting up some of the IDEs is located
under the manual/IDE-Setup directory.

2.11 Kiss Framework Updates

The Kiss framework is continually enhanced. Kiss includes a mechanism to upgrade your
application.

The process of upgrading your application is as follows:

1. Go to the directory containing a virgin clone of the Kiss framework (not your applica-
tion).

2. Update your clone via: git pull

3. While remaining in the virgin Kiss clone directory (and not your application directory),
run the following command:

./upgrade-kiss <path-to-your-application> (Linux & macOS)

upgrade-kiss <path-to-your-application> (Windows)

Caveat

While this upgrade process upgrades the majority of the system, there are a few files
that are not auto-updated to be sure not to clobber possible application-specific code that
may have been added. Therefore, the following files will need to be manually verified.

14 Kiss Manual

• src/main/core/org/kissweb/builder/Tasks.java

This file is left untouched by the upgrade process. You may have custom tasks or
modified existing tasks. Be sure to check buildForeignDependencies().

• libs

The upgrade process installs new or updated JAR files that are part of the Kiss system.
However, you may have added application-specific JAR files. After the upgrade, be
sure to manually delete any outdated JAR files that come with Kiss that have been
upgraded by this process.

2.12 What Do I Do With It Now?

What you have at this point is the beginnings of your new application. Kiss is provided as
a running and deployable system. It is expected that you would modify what’s there to suit
your application needs.

Besides this narrative, you would need the JavaDocs located under the work/javadoc

directory for back-end API specific documentation and front-end API reference located in
the manual/jsdoc directory.

15

3 Orientation

The entire source code comes with the system and is convenient when debugging, however,
only a few areas in the system would normally be of concern when building an application
as follows.

3.1 Back-end Application Files

src/main/backend/KissInit.groovy

This file is used to configure the system. See [Setup And Configuration], page 10,

src/main/backend

All other files under this directory represent the application back-end. All the
files are used and distributed in source form. The Kiss system compiles them
at runtime but does not save the compiled form. Updates to files under this
directory take affect immediately on a running system.

3.2 Front-end Application Files

Files under the src/main/frontend directory represent the front-end of the application.

All files under the src/main/frontend/kiss directory are part of the Kiss system and
would normally not need to be touched.

index.html and index.js are also part of the Kiss system and aren’t normally modified.

login.html and login.js represent the user login page and would be modified to suit
your needs.

Other directories such as page1 represent other user pages and would be the application
specific screens you create. The included page1 directory is only an example page.

3.3 Database

Kiss supports Microsoft SQL Server, Oracle, PostgreSQL, MySQL, and SQLite.

As shipped, Kiss comes configured with an embedded SQLite server and database. While
this is fine for a demo or small application, a real database should be configured for real use.
The included database is located in the backend directory and is named DB.sqlite

Although Kiss has no preferred database, PostgreSQL is strongly recommended because
it is free, full featured, fast, rock solid, and portable on all major platforms.

See [Setup And Configuration], page 10,

3.4 Single Page Application

Kiss applications are single page applications in the sense that there is a single <body> tag
and all other pages essentially get placed into that tag on a single page. However, Kiss is
not a single page application in the sense that the entire application gets loaded with a
single GET request. This doesn’t make sense for a large business application in which many

16 Kiss Manual

hundreds of pages may exist. Kiss lazy-loads pages as they are used, and except for browser
cache, eliminates them once another page is loaded.

3.5 Controlling Browser Cache

The user’s browser cache can be controlled from the file src/main/frontend/index.html
In that file you will see two lines that look as follows:

var softwareVersion = "1"; // version of the entire system

var controlCache = false; // normally true but use false during

// debugging

If controlCache is set to true, each time softwareVersion is incremented all users
starting the application will be forced to load new code from the server and not use their
browser’s cache. Once they download the new version, normal browser cache activity will
occur.

3.6 Creating JavaDocs

JavaDocs for the Kiss system will need to be created. It is created from the command line
by issuing the following command:

./bld javadoc [Linux, Mac, BSD, etc.]

-or-

bld javadoc [Windows]

The JavaDoc files end up in the work/javadoc directory.

3.7 Deploying A Kiss Application

The only file needed to deploy the application is Kiss.war It can be built by typing ./bld

war at a command prompt. Kiss.war ends up in the work directory. If you have your IDE
create the Kiss.war file, it will likely not work. The Kiss system requires a special build
process because application files are distributed in source form. Therefore, bld should be
used to create the production WAR file.

If using tomcat, Kiss.war should be placed in the webapps directory. When tomcat starts,
it will see the file, unpack it, and run it. The application will be available at [HOST]/Kiss

Renaming Kiss.war to ABC.war, for example, will cause the application path to change
to [HOST]/ABC

3.8 Learning The System

In order to start getting a feel for how Kiss applications function, in terms of the back-end,
look at files in the src/main/backend/services directory. With Kiss you can develop
applications in several different languages. The services example shows the same code in
all of the supported languages.

In terms of the front-end, see the example files under src/main/frontend/page1

17

4 Developing

This section details the development process with Kiss. The details provided will be for
IntelliJ but can be adapted to other IDE’s. The use of an IDE is tremendously beneficial
because of the graphical debugging and intelligent code completion capabilities.

A good development environment includes two separate servers running on two different
ports. One serves the back-end REST services, and the other serves the front-end HTML,
JavaScript, and CSS files. This arrangement allows both front-end and back-end development
without any compiles, server reboots, file copies, or deployments. Back-end and front-end
files can be edited and saved. Their changes take effect immediately.

Of course, in a production environment, only a single server would be utilized and
front-end and back-end changes take effect immediately there too.

4.1 Overview

The following details the normal steps to boot up a development environment. Once this
environment is set up, it may remain active for the whole day. There is rarely any reason to
re-build or re-boot the development environment.

Note that all of the command-prompt commands are executed from the root of your
application.

1. In a command-prompt, type: ./view-log (not needed on Windows)

This is where back-end messages appear. This command is not needed under Windows.

2. In a second command-prompt, type: ./bld develop (bld develop on Windows)

This builds the system and runs the back-end and front-end servers.

3. In the IDE, attach to the Java process at port 9000.

This will allow you to debug the back-end.

4. From your browser, go to http://localhost:8000

This is where you view and interact with your application.

5. Open the Developer tools from within the browser.

This is where you debug the front-end.

6. Be sure to disable network caching on the browser. (Otherwise, changes you make to
the front-end will not immediately appear in the browser.)

At this point, development, testing, and debugging can occur unabated. There should be
no need to rebuild or bring anything down.

Front-end changes will appear as soon as you re-load the page on your browser. Back-end
changes with take effect immediately.

4.1.1 IDE

While development with Kiss does not require an IDE, most developers utilize an IDE
(Integrated Development Environment). Kiss includes an effort to assist with IDE integration
(such as an ant interface to our build system).

See the files under the manual/IDE-Setup director for further information.

http://localhost:8000

18 Kiss Manual

4.2 Back-end Development

The back-end works differently in development and production environments. Although
in both environments back-end and front-end changes take effect immediately, setup of
the production environment copies all files into the production environment, whereas in a
development environment the source and production code are split. In order to facilitate
rapid and easy development, it is important that source files be used rather than the
production copies during the development process.

The system automatically detects the location of the application source in most configu-
rations. However, this may be explicitly set via a system environment variable (KISS_ROOT).
The value of this environment variable should be the absolute path of the root of the
application source code. The directory it indicates should have a sub-directory named
src/main/backend.

4.2.1 REST Server

There are two different methods of running the back-end REST server as follows.

4.2.1.1 IDE

Running of the IDE back-end requires the following:

1. The IDE is completely configured.

2. The system was build with the IDE

Typically, the IDE manages a tomcat instance and serves up the core back-end code
serving the REST services. That code detects that it is running under an IDE and re-routes
all back-end application files back to the source directories.

Although back-end files are edited in source form and run in compiled form, back-end
code can be debugged (including break-points) as if they were compiled before the system
was booted.

Once the back-end server is up, application files changed under the src/main/backend
directory will take effect immediately.

4.2.1.2 BLD

Utilizing the included Kiss build system (bld) the many steps required to install and configure
tomcat and the IDE are unnecessary. The whole process (for the back-end portion) can be
done as follows:

1. From any stage (including having just downloaded the Kiss system) type the following:
./bld develop

Note: Remember that all commands that start with ./ would drop the ./ under
Windows.

At this point, the back-end will be running. From within your IDE you can attach to the
process at port 9000 to debug the back-end (including breakpoints, etc.)

Remember, however, that you won’t be able to use or debug the application until the
front-end server is started too.

Chapter 4: Developing 19

4.2.2 Application Code

All communications between the front-end and back-end occur over REST services you
define. Each REST service exists in its own file or class. Web methods are methods within
those classes.

As architected, directories under src/main/backend represent the application’s REST
services. Each class / file under that directory represents a web service. The name of the
class is the name of the web service.

Instance methods within the web service class represent REST methods for that web
service. Each web method is passed four arguments as follows:

JSONObject injson

This represents the data that came from the front-end.

JSONObject outjson

This represents the data being returned to the front-end. It is pre-initialized
with an empty JSONObject.

Connection db

This is a pre-opened connection to the defined database (defined in
backend/KissInit.groovy)

MainServlet servlet

This is a rarely used servlet context argument.

Basically what happens is:

1. The front-end makes a REST service call.

2. The Kiss back-end receives the request.

3. The user gets authenticated.

4. A new database connection is formed, and a new database transaction is started.

5. The requested web service is identified (and loaded and compiled if needed).

6. The outjson object that is filled in by the web service that is to be returned to the
front-end.

7. Upon completion of the REST service, Kiss commits the transaction, closes the database
connection, and returns outjson to the front-end.

8. If, however, the REST service threw an exception, Kiss rolls back the transaction, closes
the database, and sends an error return to the front-end.

Additional class and instance methods, that are not web methods, may be defined and
used within web service classes.

Of course during this process, Kiss handles many possible error conditions.

4.2.3 Cached User Data

During the login process, user-specific data may be cached. This often occurs in the login
Groovy method of the Login application-specific class.

Every web service has access to this data via the following method:

20 Kiss Manual

servlet.getUserData().getUserData("dataName")

servlet.getUserData().putUserData("dataName", "datValue")

See [Authentication], page 22,

4.2.4 Programming Languages

At this point, Kiss supports the development of back-end REST services in the Java, Groovy,
or Common Lisp languages. Groovy was added first because it was easy, worked with the
IDE well, and did all that was needed. (See the document GroovyOverview included with
KISS.) Java was added simply due to its natural integration with the rest of the system.

With Kiss, different web services can be written in different languages. You are not
forced to use one or the other.

Common Lisp (ABCL) was added due to this author’s love of that language. Unlike
Groovy and Java, Lisp has an impedance mismatch with the core Kiss system that is written
in Java. For example, in Java, one can have two methods with the same name in the same
class that differ only by their argument types. This is not part of the Common Lisp language.
Also, the foreign function interface in Lisp requires some Lisp code to make the connection
clear. Due to this connection code having to run, the Lisp interface is very slow on the first
call. It is, however, reasonably fast on all subsequent calls. The code that interfaces Java to
Lisp is under the src/main/core/org/kissweb/lisp directory.

Do to the easy and natural connection between Java and many other JVM languages,
interfaces to those languages is very easy. It is anticipated that support for many of these
other languages (such as Scala, Clojure, JRuby, Jython, and Kotlin) will likely follow,
especially if there are requests.

4.2.5 Cron

Kiss has the ability to run any number of commands at specified intervals. For example,
you could run a process every hour and another process every Tuesday at 3 PM, etc. This
facility echos the standard Unix or Linux cron facility.

The file that determines what gets run and when is
src/main/backend/CronTasks/crontab. All tasks must be in the Groovy language and
exist in the src/main/backend/CronTasks directory.

All contents of the src/main/backend/CronTasks can be changed on a running system.
The change will get noticed and take effect. There is no need to restart the system.

Look at the files in the src/main/backend/CronTasks directory for samples and further
documentation.

4.2.6 CORS

For security reasons, web servers prevent web services from an application that didn’t come
from the same application. This is known as Cross-Origin Resource Sharing or CORS. Kiss
fully supports this security standard.

Kiss automatically enables full CORS protection on production environments and allows
CORS in the development environment.

Chapter 4: Developing 21

4.3 Front-end Development

A separate server is used so that development files will be served rather than the front-end
that was present when the back-end server was started. This is the same whether your are
using the IDE or bld back-end server modes.

Once the back-end and front-end servers are running, the front-end can be debugged
through your browser debugger (F12 on Chrome).

In order to make this work, there are two steps that need to be followed.

1. The front-end needs to know where the back-end is located. This is controlled in the
file src/main/frontend/index.js. That file contains a line that looks as follows:

Server.setURL('http://localhost:8080');

As shipped, that setting should be good in most cases. Adjust as needed.

2. A server needs to be running to serve the front-end code. The Kiss system comes with
a simple server that performs this function. It is in a file named SimpleWebServer.jar

on the root of the Kiss system. From the root of the Kiss system, run the following
command to run the front-end server:

./serve

or on Windows:

serve.cmd

(Source code to this simple server is available at https://github.com/blakemcbride/
SimpleWebServer)

Once the front-end and back-end servers are up, you can access the development environ-
ment through your browser at http://localhost:8000

If you disable the browser cache through the browser developer console settings, changes
you make to the front-end will appear by just reloading the page. On Chrome, for example,
the browser cache can be turned off by going into the page debugger (F12), then settings,
and then select Disable cache (while DevTools is open)

You can now develop the front-end portion of your application by editing files under the
src/main/frontend directory.

4.3.1 Mobile Interface

It is often necessary to support mobile devices. Although many applications support mobile
applications through pages that use responsive design, it is often the case that the pages are
so different between various platforms that the use of whole new pages is simpler and more
effective – especially for complex screens.

Although Kiss has always supported responsive design, Kiss also supports the ability to
have different pages for different platforms. If you look at src/main/frontend/index.js
you will see how Kiss handles this. Basically Kiss detects the platform and loads different
pages based on the platform.

https://github.com/blakemcbride/SimpleWebServer
https://github.com/blakemcbride/SimpleWebServer

22 Kiss Manual

4.4 Reports And Exports

Creating reports and exports requires both front-end and back-end components. The back-
end usually creates the file to be sent to the front-end. It then returns a path that the
front-end can use to download the file.

Kiss provides the infrastructure needed to support this facility. Kiss also manages and
cleans up report files that are no longer needed.

In terms of producing reports, Kiss leverages the facilities provided by the common
groff/tbl/mm utilities publicly available. These facilities automatically handle paging, titles,
page numbering, tables, and overall formatting of your reports. See https://www.gnu.org/
software/groff

In terms of producing CSV export files, see the back-end DelimitedFileWriter class.

When files are produced by the back-end, they are sent to the front-end by just providing
the URL to the file. At that point, the front-end Utils.showReport takes the URL returned
by the back-end and downloads the file.

4.5 Authentication

Kiss has built-in authentication. However, each application has its own method of storing
and validating users. Additionally, each application may have its own user-specific data it
may want to retain between web service calls. Kiss has a generic and easy way of handling
these needs.

Application-specific user login and data is handled by the Groovy file located in the
backend directory named Login.groovy. That file must have two methods; login and
checkLogin. See that file for more details.

See [Cached User Data], page 19,

https://www.gnu.org/software/groff
https://www.gnu.org/software/groff

23

5 Front-end API

The front-end API are all the facilities that run on the browser. This includes HTML,
CSS, JavaScript, image files, etc. The Kiss back-end does not produce or modify HTML or
JavaScript code. These files are served, unaltered, by the server as they are on the back-end
disk. The Kiss model is that the browser receives these files from the server, and that they
include all the code that the browser needs to perform its function. Besides these static files,
all data is communicated between the back-end and front-end via REST services.

Having all of the display logic running on the front-end or user’s browser makes a lot of
sense for the following reasons:

1. Minimize the dependence the front-end and back-end have on each other. This means
that one end can be changed without necessitating the need for the other to change. In
other words, they are minimally dependent on each other.

a. In this rapidly changing environment, minimizing dependencies means minimizing
the amount of code that has to be changed as technology changes.

b. Code is easier to understand and maintain since you don’t have four totally different
languages in the same file.

2. Push as much processing to the client side so that the back-end can scale easier.

All of this leads to the following:

1. Shorter development time

2. Easier to maintain

3. Be most prepared for future changes

4. Reduces server costs

5. Reduced development time and cost

The front-end API is documented in the file manual/jsdoc/index.html.

5.1 Calling REST Services

On the front-end, the class Server is what deals with the REST communications between the
front-end and back-end. In it, there are a handful of methods that deal with the environment
such as the back-end URL. All communications between the back-end and front-end are
done with JSON.

The way it works is the login service requires a username and password, and it returns a
login token (uuid). That token is used in all future calls, and it gets automatically invalidated
after a certain amount of non-use time. There is no state kept on the back-end. Each REST
call must login to the back-end with the provided token in order to be authenticated to
communicate.

The method used to communicate is named Server.call(). It is passed the path to
the REST service, the REST service method name, and a JSON object that is send to the
back-end method. A Promise is returned that is used to obtain the result of the call. This
can also be used with async/await.

24 Kiss Manual

There is also a logout method that simply erases the login token so that future commu-
nications cannot occur.

The Server class also includes a method (fileUploadSend) that makes it easy to upload
files.

5.2 Kiss Components

Although HTML provides what is needed for real applications, it provides those facilities
in too low a level to be useful without a lot of custom code. Custom components (tags)
allow you to encapsulate that advanced behavior into what is used as and appears as native
functionality.

Kiss provides the ability to create your own custom HTML tags or elements as well
as use those provided by Kiss. There are two principal user methods that make this
work. Utils.useComponent is used to load either a Kiss defined component or one
you define yourself (there is no difference). This loads the JavaScript file that defines
the new tag. All of the components that come with the Kiss system are under the
src/main/frontend/kiss/component directory. You can see those files for examples of
how custom tags are defined.

New application pages are loaded with the Utils.loadPage method. In addition to
loading the HTML and JavaScript code associated with that page, this method performs
the processing necessary to make the components work. It does this intelligently so that,
for example, one component can use another component without any special loading order
requirement.

Briefly, the code that describes the custom tag must describe what the tag is replaced
with. Ultimately, it must boil down to straight HTML, CSS, and JavaScript code.

5.2.1 Tagless Components

Let’s say you have a pop-up window that allows a user to search for employees, or product,
or whatever. The user gets a variety of search capabilities and the selected item is returned.
Let’s further say that you need this functionality in several places within your application.
These are tagless components. They aren’t placed with a custom tag. They are a response
to an event like a button push. Tagless components allow you to encapsulate a block of
functionality (including pop-up windows) into a neat package that can be re-used in any
number of places.

The method used to load tagless components is Utils.useTaglessComponent. Later,
when the tagless component is needed, one would execute Kiss.MyComponent.run(in_data,
on_exit) (where MyComponent is the name of your tagless component. in_data represents
possible data passed to the component on entry. on_exit is a function that gets executed
when the component exits. Arguments passed to on_exit are determined by the component.

5.3 Modal Popup Windows

Kiss supports draggable, modal popup windows. HTML is used to describe the layout of
the popup, and JavaScript is used to control the appearance of the popup.

Chapter 5: Front-end API 25

The HTML portion is represented as a top-level popup tag that represents the entire
popup. Withing the top-level popup there most be two child tags named popup-title and
popup-body. The first represents the single line header, and the second represents the body
of the popup window.

The top-level popup tag’s attribute section must contain the following:

id="my-popup"

an ID is needed to reference the popup

width="600px" height="300px"

Set the height and width of the popup

An examples is as follows:

<popup id="my-popup" width="600px" height="300px">

<popup-title>The title</popup-title>

<popup-body>

The content

<div style="display: inline-block; position: absolute; bottom: 20px; right: 20px;">

<push-button id="cancel" style="margin-left: 15px;">Cancel</push-button>

<push-button id="ok" style="margin-left: 15px;">Ok</push-button>

</div>

</popup-body>

</popup>

There are only two JavaScript functions used to control the popup.

Utils.popup_open(id [, focus-id])

open the popup indicated by the id, and if focus-id is present, set initial focus
to that control

Utils.popup_close()

close the most recent popup

Your defined responses to the buttons on the popup determines your dealing with the data
on the popup and when to close it.

5.4 File Uploads

Kiss includes facilities that make it easy to upload a file or multiple files. The way to use it
is as follows:

The HTML would contain two controls; a file input and a button. The file input looks as
follows:

<file-upload id="myUpload">Upload File</file-upload>

The file input control allows the user to select the file or files to be uploaded. If multiple
files are to be allowed the multiple attribute should be added to the HTML.

The button is used to activate the upload process. Your code that sends the file(s) to the
server should be attached to this button.

26 Kiss Manual

The file-upload control contains the helper functions numberOfUploadedFiles and
getFormData, and the main function used to send the files is fileUploadSend in the Server
class. The code would look like the following:

$$('upload').onclick(async () => {

if ($$('the-file').numberOfUploadFiles() < 1) {

Utils.showMessage('Error', 'You must first select a file to upload.');

return;

}

const fd = $$('the-file').getFormData();

let data = {

var1: 22, // just some random data we want to sent to the back-end

var2: 33

}

const r = await Server.fileUploadSend('theService, 'theMethod', fd, data);

});

Back-end code would look like this:

public void theMethod(JSONObject inJson, JSONObject outJson, MainServlet servlet) throws Exception {

String var1 = inJson.getString("var1");

String var2 = inJson.getString("var2");

if (servlet.getUploadFileCount() == 0)

throw new Exception("No file specified.");

String originalFileName = servlet.getUploadFileName(0);

BufferedInputStream bis = servlet.getUploadBufferedInputStream(0);

// do something with the file stream

bis.close();

-or-

String localFileName = servlet.saveUploadFile(0);

}

5.5 Utilities

Kiss includes an ever-growing set of utilities to help deal with common tasks. These
utilities are located under the src/main/frontend/kiss directory and have names such as
DateTimeUtils.js, DateUtils, TimeUtils, Utils, etc. These utilities are documented in
the front-end API documentation.

5.6 Controlling Browser Cache

Browser’s have a mind of their own in term of deciding when to use their cache for a file
and when to download a new one. This can cause no end of trouble when code gets changed.

Chapter 5: Front-end API 27

Some user files end up being old from the browser cache, and others are freshly downloaded.
The old and new files don’t agree with each other and all sorts of errors occur.

Kiss includes a facility to assure that all files are downloaded afresh whenever the
application changes while still taking maximal advantage of the browser cache when the files
have not changed. The only cost for this capability is the requirement that the index.html
file always gets loaded afresh. To that end, Kiss has code to ignore browser cache and
always load index.html afresh.

index.html contains two variables names softwareVersion and controlCache. As-
suming controlCache is true, Kiss has code that forces the browser to re-load all files
whenever softwareVersion changes. After the code is re-loaded, the browser cache will
work as normal to maximally cache the files until the next softwareVersion change.

5.7 Additional Resources

Although not a part of the Kiss system, there are some very valuable technologies and
libraries that have been used with Kiss in order to create some very powerful solutions.

The first is the Lovefield library that adds SQL capabilities on the browser side. Data
is persisted on the user’s browser and remains through browser or machine re-boots. The
library is located at https://github.com/google/lovefield

A recent technology that has been used to enable browser application that run when
there is no Internet connection is called Service Workers. There is a package at
https://developers.google.com/web/tools/workbox that makes working with service
workers very easy.

https://github.com/google/lovefield
https://developers.google.com/web/tools/workbox

29

6 Back-end API

In addition to the full API provided by the Java system, and any additional JAR files you
add, Kiss comes with an API that assists with the development of business application with
Kiss. These API’s may be broadly grouped as follows:

1. Database API

2. JSON API

3. Utilities

An overview of these API’s is contained in this chapter. Detailed documentation is
contained in the JavaDocs. See [Creating JavaDocs], page 16.

6.1 Database API

Kiss comes with a powerful library for accessing SQL databases. Code for this is located
under org.kissweb.database It is currently being used in production environments. This
API provides the following benefits:

• Automatic connection and statement pooling

• Vastly simpler API than bare JDBC

• Handling of parameterized arguments

• Auto generation of SQL for single record adds, edits, and deletions

• Auto handling for cases of cursor interference on nested queries

• Supports transactions out-of-the-box

As shipped, this library supports PostgreSQL, Microsoft Server, Oracle, MySQL, and
SQLite.

The detailed documentation for the database utilities are in the JavaDocs which you
must generate. (See [Creating JavaDocs], page 16.) This section provides an overview.

The Kiss database routines revolve around four main classes as follows:

Connection

This represents a connection to an SQL database.

Command This represents a single action or command against the database.

Cursor If the action is a select, the Cursor represents a pointer into the result set.

Record This class represents a single row within a table or result set.

The Connection class contains several convenience methods that are used in simple cases
where only a single action is being performed. These methods should not be used when
multiple simultaneous actions are taking place at once (by that single thread). This issue is
not a problem in multi-user or multi-threaded situations. It is only a problem when a single
thread is doing one action while another action is still open.

You will notice that your REST services are passed a Connection argument. Kiss
automatically forms a unique connection for each REST service call and closes it when

30 Kiss Manual

the call is done. Therefore, you will not normally need to create your own connection.
Additionally, Kiss automatically starts a new transaction with each REST service and
commits it when the service is done. However, if the service throws any exception, the
transaction is rolled back instead.

You would not normally write SQL for single record adds, updates, and deletes. Using
the Record API, Kiss automatically generates these statements for you.

In addition to the above, these utilities provide full support for transactions and parame-
ters.

6.2 Microservices

Microservices are classes that may be added, changed, or deleted while the system is running.
In spite of this, however, all microservices are fully compiled and run at full speed. This has
two major advantages.

First, in a development environment, all development may be done without the need to
bring the development server down, rebuild, re-deploy, and reboot the development server.
This means development time is significantly reduced. Additionally, IDE debuggers function
in an environment such as this so the debugging process may proceed normally.

Second, in a production environment, the system may be upgraded without disrupting
existing users on the system. Of course users actively using the exact features you have just
changed could be affected (if their front-end and back-ends do not agree). A simple re-try
would put everything back in sync.

Kiss microservices are on a class basis. What that means is that a microservice is always a
single and whole class. You cannot have more than one class in a microservice. Microservices
can call core components of the system just as regular methods can. However, if one wishes
to have one microservice call another microservice, the calling mechanism is a little more
clunky. However, using this clunkier mechanism retains all of the dynamic features of the
system.

Defining microservices in Kiss involves defining a normal class just as you would write a
class in any circumstance. No special configuration, wiring, declarations, or additional steps
are required. Microservice additions, changes, and deletions take affect as soon as you save
the source file. All microservices are compiled at runtime by the system automatically. So
there is no compilation step that you need to perform.

The only caveat to the above is that remote microservices (described below) expect a
certain method signature (standard arguments). This is only to assure that the front-end and
back-end can communicate as expected. Local microservices do not have this requirement.

6.2.1 Microservice Language

In Kiss, microservices can be written in Java, Groovy, or Common Lisp. However, Groovy
microservices have been used exclusively in all current environments that we are aware of.
Therefore, Groovy microservices are best tested.

The reasons Groovy was used are as follows:

Chapter 6: Back-end API 31

1. Groovy was the easiest and most natural to implement.

2. Groovy runs as fast as Java and has full and natural access to all Java facilities.

3. The actual loading of Groovy services is the fastest of the three languages.

4. Groovy is largely a super-set of Java so if you know Java, you basically know Groovy.
Learning of additional Groovy facilities can occur over time.

5. Groovy offers a small number of conveniences over Java.

Having said all this, however, all three languages are fully supported and there are no
known bugs in any of the languages supported.

6.2.2 Types Of Microservices

There are two types of microservices as follows:

1. Remote (REST) Services

2. Local Services

Remote services are generally called by a (likely JavaScript) front-end or a remote
client typically over HTTP or HTTPS. Local services are services that are called locally,
from within the system as, for example, one microservice calling a method in a different
microservice.

6.2.3 Remote Microservices

In Kiss, remote microservices appear to the outside world as typical REST services. They
may be called by a JavaScript front-end, web service client, or any other facility that can
talk to REST services.

Kiss REST services are asynchronous HTTP or HTTPS services. Internally they are
processed utilizing a thread pool to assure optimal CPU utilization. The number of threads
in the thread pool is controlled by a configuration parameter given in the KissInit.groovy
file.

Kiss comes with JavaScript code so that Kiss REST services can be easily accessed from a
typical front-end. This code resides in a single file and can and has been used by alternative
front-ends such as Angular and React.

There is no need to handle authentication. Kiss handles that automatically. So, when
your web method is called, you know who they are and that they have been authenticated.

6.2.4 Defining Remote Services

Remote REST microservices typically reside under the backend/services directory. You
can organize them any way you like. A microservice is equivalent to a class. The class
name is the microservice name. The methods in that class that have a certain signature
(particular set of arguments) are the web methods.

A REST web microservice has the following signature:

void myMethod(JSONObject injson,

JSONObject outjson,

Connection db,

32 Kiss Manual

ProcessServlet servlet) {

...

}

‘injson’ This is a JSON object that contains all of the arguments passed in from the
front-end.

‘outjson’ This is a JSON object which will contain all of the results sent back to the
front-end. Whatever is put in this object gets sent back to the front-end.

‘db’ This is a database connection that can be used to access the SQL database. The
connection is unique and independent of all other services.

‘servlet’ This object provides access to various system facilities uniquely related to this
call.

See [JSON], page 32, and the JavaDoc for additional information.

6.2.5 Local Microservices

Local microservices are simply regular classes. They typically reside in the
backend/services directory organized anyway you like. Although methods within a
particular microservice/class can call each other in the normal way, there is an extra step
required for one microservice to call method in a different microservice. One of the reasons
for this is so the system can be certain the latest version of the service is loaded and that it
is fully compiled before you attempt to use it.

In Groovy, a method in one class/microservice can call a method in a different
class/microservice via the following methods.

• GroovyService.run

• GroovyService.getMethod

See the Javadoc.

6.3 JSON

The first two arguments to all REST methods is injson and outjson. injson is a
JSONObject that contains the data passed in from the front-end. outjson is a pre-initialized,
empty JSONObject that will be returned to the front-end. The rest service should read the
data passed in from injson, perform any needed processes, and put the result into outjson

to be returned to the front-end.

A modified version of a publicly available JSON Java package is included and used to
access JSON from the front-end and create JSON to return to the front-end. This package
has many methods but only a few are commonly used.

There are two main data type of interest. They are JSONObject and JSONArray. They
hold the JSON types indicated by their names.

Command useful for getting data out of injson:

• JSONObject.has(String key)

Chapter 6: Back-end API 33

• JSONObject.getString(String key)

• JSONObject.getBoolean(String key)

• JSONObject.getInt(String key)

• JSONObject.getLong(String key)

• JSONObject.getDouble(String key)

• JSONObject.getFloat(String key)

• JSONObject.getJSONArray(String key)

• JSONArray.length()

• JSONArray.getString(int index)

• JSONArray.getBoolean(int index)

• JSONArray.getInt(int index)

• JSONArray.getLong(int index)

• JSONArray.getFloat(int index)

• JSONArray.getDouble(int index)

• JSONArray.getString(int index)

• JSONArray.getJSONArray(int index)

Again, outjson is supplied as a pre-initialized, but empty, JSONObject. It is up to the
REST service code to populate it with the return data. Useful JSON utilities include the
following:

• JSONObject.put(String label, Object data)

• new JSONObject()

• new JSONArray()

• JSONArray.put(Object obj)

6.4 Utilities

Kiss includes an ever-growing set of utilities to help deal with common tasks. These utilities
are located under the src/main/core/org/kissweb directory and have names such as
DateTime.java, NumberFormat, etc. These utilities are documented in the JavaDocs.

35

7 Command Line Utility

In addition to utilizing Kiss as a web application development system, Kiss also provides a
command line interface. This interface allows you to build quick but powerful utilities to do
things like updating a database, parsing a CSV file, interfacing with a third-party REST
service, and more. Basically, all of Kiss is available except the Kiss REST server.

Although this system supports PostgreSQL out-of-the-box, it also supports any of the
other databases with a slightly more complex command line.

7.1 Building The Utility

The build system (bld) has the ability to build a JAR file named KissGP.jar. The GP
stands for Groovy and PostgreSQL. Basically, it is a JAR file capable of running Groovy
scripts in the context of all of the Kiss utilities including access to a PostgreSQL database.

(It should be noted that although Groovy scripts are text / source files, they nevertheless
run at full compiled speed because they are compiled at runtime.)

To build the JAR file, type the following:

./bld KissGP

A file named KissGP.jar will be created in the work directory. That, in addition to the
JDK, is all that is needed to use the system.

7.2 Using The System

To use the Kiss command line interface you first create the Groovy program you would like
to run. It may use all of the Groovy and Kiss API. For example, let’s start with something
simple. Create the following file named test1.groovy :

static void main(String [] args) {

println "Hello world!"

}

You can then run the program as follows:

java -jar KissGP.jar test1

test1.groovy can be extended arbitrarily to perform any function needed.

7.3 Databases Other Than PostgreSQL

Although KissGP.jar comes bundled with support for the PostgreSQL database, KissGP.jar
can support databases other than PostgreSQL by adding the driver for the database and
using a slightly more complex command line as follows.

To use KissGP.jar with Microsoft SQL Server, for example, you’d have to include the
database driver for it in addition to the KissGP.jar file and the file with your program. The
command line would look as follows:

java -cp mssql-jdbc-8.2.0.jre8.jar -jar KissGP.jar test1

36 Kiss Manual

The same is true of the other databases. Please note that the drivers you’ll need are
already in the libs directory.

37

8 Split System

Kiss comes as a complete system that includes both the front-end and back-end. This
works well for most situations. However, sometimes a web application may have a single
back-end that serves several different front-ends. Or, perhaps you prefer to keep the front-end
and back-end projects separate. Kiss has a mechanism to support the ability to split the
front-end and back-end.

This chapter will detail the steps needed to accomplish this.

8.1 Back-end-only System

A back-end-only system is a complete system minus the front-end portion of the system.
The git repo is also deleted since it is meaningless in this scenario.

8.1.1 Creating

In order to create a back-end-only system you start with a complete Kiss system cleanly
checked out and delete the front-end portion. That leads you with a back-end-only system.
However, before doing that, you must install the third-party libraries. The following
commands will accomplish this whole process.

./bld libs (Linux or Mac)

./remove-frontend remove

or

bld libs (Windows)

remove-frontend remove

Once these command have been run, what you have left is a back-end-only system. The
git repository it came in will have been deleted as well as the front-end portion of the system.
The procedure for developing, deploying, and upgrading the system will be slightly modified
as described herein.

8.1.2 Developing

The main difference between developing on a back-end-only system vs.\ a whole system is
just that the command used to start the back-end is slightly different. The locations of all of
the back-end pieces are the same. Once running, the system may be modified while running
just the same.

Use the following command to build and run the back-end:

./bld developBackend (Linux or Mac)

or

bld developBackend (Windows)

Viewing the server log is done in the same way as before.

8.1.3 Deploying

Deploying the back-ed is done just as before except now, instead of a single file containing
the whole system, you have a single file that represents the back-end only. When deploying

38 Kiss Manual

the front-end and back-end portions, they will be treated as two separate systems to the
server.

8.1.4 Upgrading

Upgrading a back-end-only project is done the same way as upgrading a full system except
that after the upgrade, you’ll need to run the remove-frontend script again. See [System
Updates], page 13,

8.2 Front-end-only System

A front-end-only system is a complete system minus the backend-end portion of the system.
The git repo is also deleted since it is meaningless in this scenario.

8.2.1 Creating

In order to create a front-end-only system you start with a complete Kiss system cleanly
checked out and delete the back-end portion. That leads you with a front-end-only system.
However, before doing that, you must install the third-party libraries. The following
commands will accomplish this whole process.

./bld libs (Linux or Mac)

./remove-backend remove

or

bld libs (Windows)

remove-backend remove

Once these command have been run, what you have left is a front-end-only system. The
git repository it came in will have been deleted as well as the backend-end portion of the
system. The procedure for developing, deploying, and upgrading the system will be slightly
modified as described herein.

8.2.2 Developing

Before running the front-end, you should start the back-end as described above.

There are no steps required to edit front-end files. However, you must serve them. This
can be accomplished with the following command:

./serve (Linux or Mac)

or

serve (Windows)

Presuming the back-end is running, you can access the running system at
http://localhost:8000

As before, you can edit front-end files while the system is running.

8.2.3 Deploying

The front-end must be distributed as a seperate war file named frontend.war. This file can
be created with the following command:

./make-frontend (Linux or Mac)

Chapter 8: Split System 39

or

make-frontend (Windows)

From your server’s perspective, the front-end and back-end are two different systems.

8.2.4 Upgrading

Upgrading a front-end-only project is done the same way as upgrading a full system except
that after the upgrade, you’ll need to run the remove-backend script again. See [System
Updates], page 13,

41

9 Desktop Applications

Although there are no specific instructions, portable desktop applications can be built
utilizing Kiss in conjunction with Electron (https://electronjs.org). These applications
would be portable to Linux, Mac, Windows, and other platforms with a single codebase.

Kiss would provide the back-end portion of the application as a local server and could
be written in Java, Groovy, or Lisp.

The front-end portion of Kiss would be used in conjunction with Electron in HTML,
CSS, and JavaScript.

The two halves would communicate locally and operate as a standard desktop application.

If there is interest, please contact this author for assistance.

https://electronjs.org

	1 Introduction
	Kiss Highlights
	Back-end Highlights
	Front-end Highlights
	Back-end Web Service Example
	Front-end Web Service Usage Example

	Supported Environments
	Development Environment
	Production Environment
	Databases Supported
	Java

	HTML component usage
	System Maturity And Stability
	Getting All Source Code
	Support, Contact, And Links
	License
	Acknowledgments

	2 System Setup
	Important
	Super-Quick-Start
	Quick-Start Checklist
	Runtime Environments
	Pre-requisites
	Groff and PDF

	Download Kiss
	Documentation
	Setup And Configuration
	Bypassing Authentication
	Building The System
	Using an IDE

	Kiss Framework Updates
	What Do I Do With It Now?

	3 Orientation
	Back-end Application Files
	Front-end Application Files
	Database
	Single Page Application
	Controlling Browser Cache
	Creating JavaDocs
	Deploying A Kiss Application
	Learning The System

	4 Developing
	Overview
	IDE

	Back-end Development
	REST Server
	IDE
	BLD

	Application Code
	Cached User Data
	Programming Languages
	Cron
	CORS

	Front-end Development
	Mobile Interface

	Reports And Exports
	Authentication

	5 Front-end API
	Calling REST Services
	Kiss Components
	Tagless Components

	Modal Popup Windows
	File Uploads
	Utilities
	Controlling Browser Cache
	Additional Resources

	6 Back-end API
	Database API
	Microservices
	Microservice Language
	Types Of Microservices
	Remote Microservices
	Defining Remote Services
	Local Microservices

	JSON
	Utilities

	7 Command Line Utility
	Building The Utility
	Using The System
	Databases Other Than PostgreSQL

	8 Split System
	Back-end-only System
	Creating
	Developing
	Deploying
	Upgrading

	Front-end-only System
	Creating
	Developing
	Deploying
	Upgrading

	9 Desktop Applications

